
La malattia residua dopo terapia neoadiuvante Valentina Guarneri

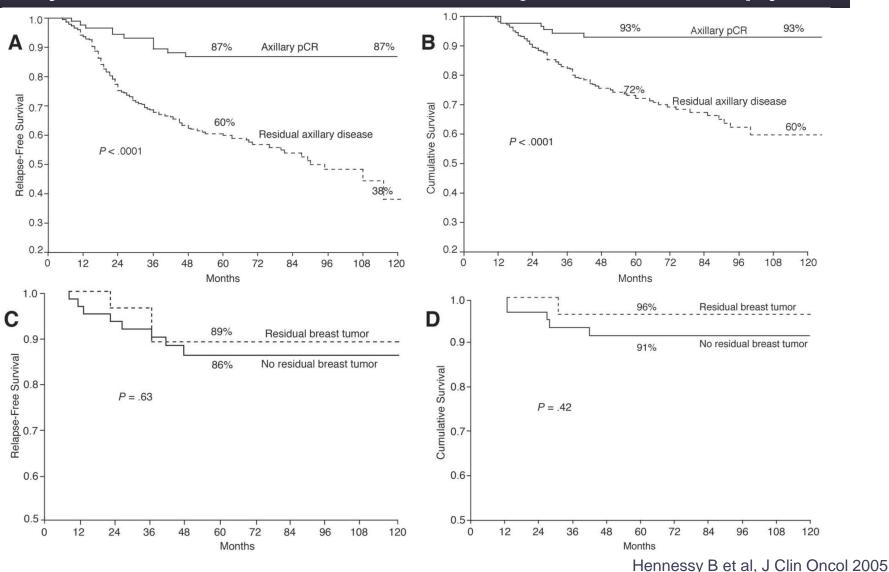
Preoperative chemotherapy for women with operable breast cancer (Review)

pCR vs residual disease, Overall Survival

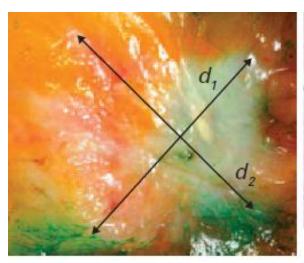
Favours pCR

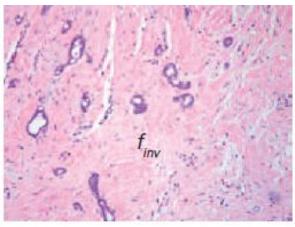
Favours pRES

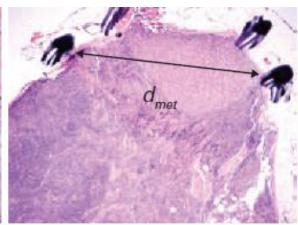
Primary systemic therapy in breast cancer


- The upfront utilization of systemic therapy provides an vivo assessment of treatment effect, and allows to identify subgroups of patients with very different prognosis
- However, the classification of responses in pCR versus non-pCR is a useful prognostic indicator for those patients with pCR, but it oversimplifies the different prognostic categories for the patients with less than pCR.
- Non-pCR category group includes patients where preoperative chemotherapy has induced an important down-staging as well as patients with highly resistant disease.
- The majority of patients does not achieve a pCR:
 - pCR rate with conventional anthra-taxanes is 20-40% in TNBC, less than 10% in HR +; 40-60% of HER2+ (+trastuzumab)

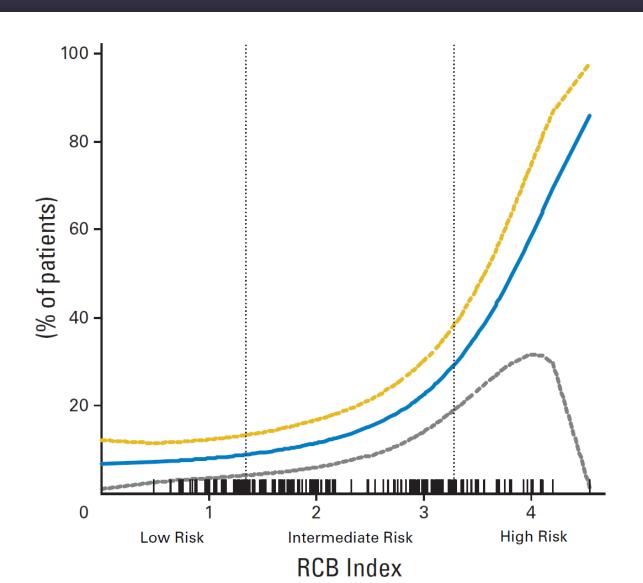
Prognostic value of nodal involvement after PCT

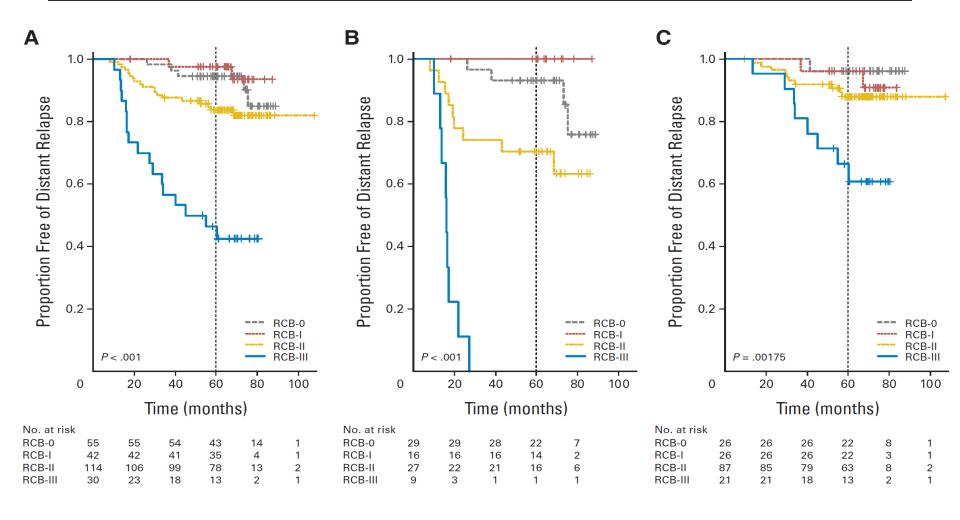

152 patients with T1-T3 tumors and cytologically proven axillary metastatic LN


Axillary status at surgery	5 yr DFS rate
No involved nodes (23%)	73.5% <u>+</u> 14.9
Residual nodal disease (77%)	48.7% <u>+</u> 9.2


Outcome of cytologically proven N+ BC with yN0 disease after neoadjuvant therapy

Residual breast Cancer Burden (RCB) to predict survival after neoadjuvant chemotherapy

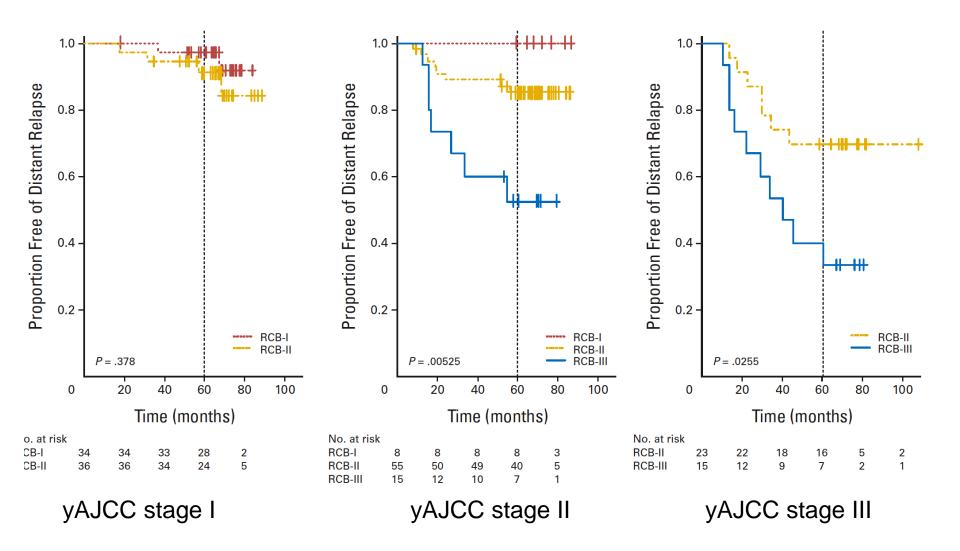



Variable	Hazard Ratio (95% CI)	<u>P</u>
Primary tumor bed dimensions (Vd1d2)	1.24 (1.04 to 1.48)	.02
Cellularity fraction of invasive cancer (f _{inv})	7.37 (2.16 to 25.1)	.001
Size of largest metastasis (d _{met})	1.17 (0.99 to 1.38)	.06
No. of positive lymph nodes	1.11 (1.04 to 1.19)	.002

$$RCB = 1.4(f_{inv}d_{prim})^{0.17} + [4(1 - 0.75^{LN})d_{met}]^{0.17}$$

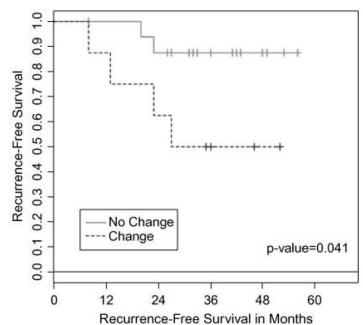
Likelyhood of 5-year Distant recurrence as a continuous function of RCB

Likelyhood of Distant Recurrence according to RCB class



HR+

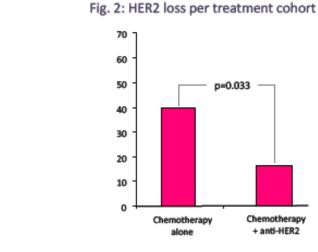
HR-

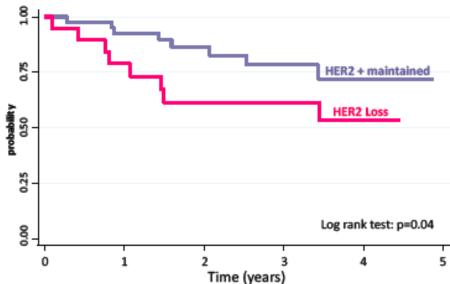

All patients

RCB and post-therapy yAJCC stage group

Loss of HER2 Amplification after trastuzumab based PCT

Status	No. patients No. events	No. events	Median	3-y estimates		5-y estimates		P
		follow-up time (mo)	%	95% CI	%	95% CI		
Overall	142	17	33.5	87.8	82.4-93.6	86.20	80.1-92.8	
pCR			33.5					
Yes	72	4		95.7	91.0-100	92.90	86.0-100	
No	70	13		80.1	70.8-90.5	_		0.0175
HER2 Status in Residual Tissue	25	6	37.0	74.9	59.4-94.5	_	_	
Amplified	17	2		87.5	72.7-100	_	_	
Not Amplified	8	4		50.0	25.0-100	_	_	0.041

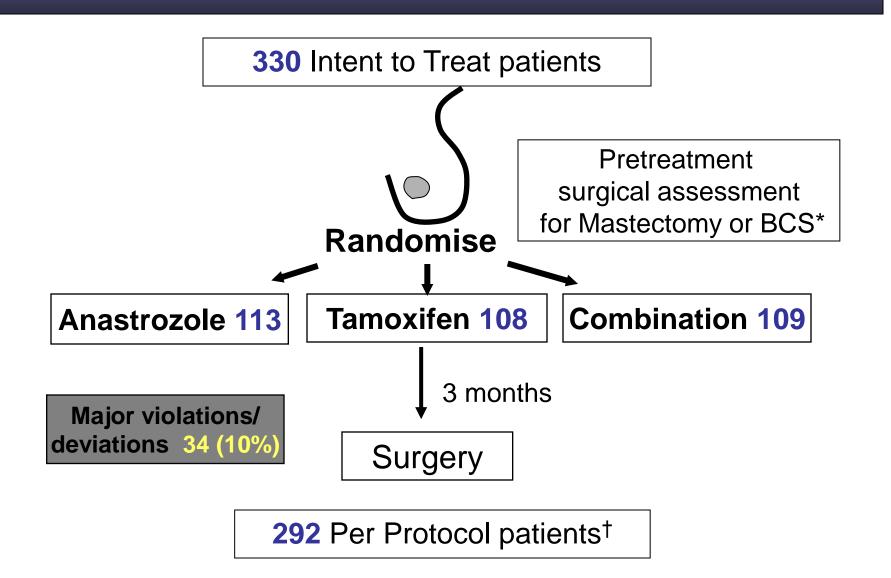



Prognostic role of HER2 loss after PCT

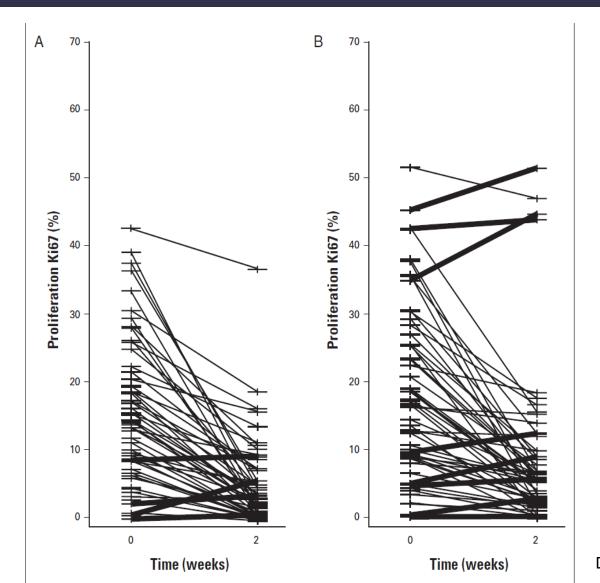
Patient characteristics per treatment cohort

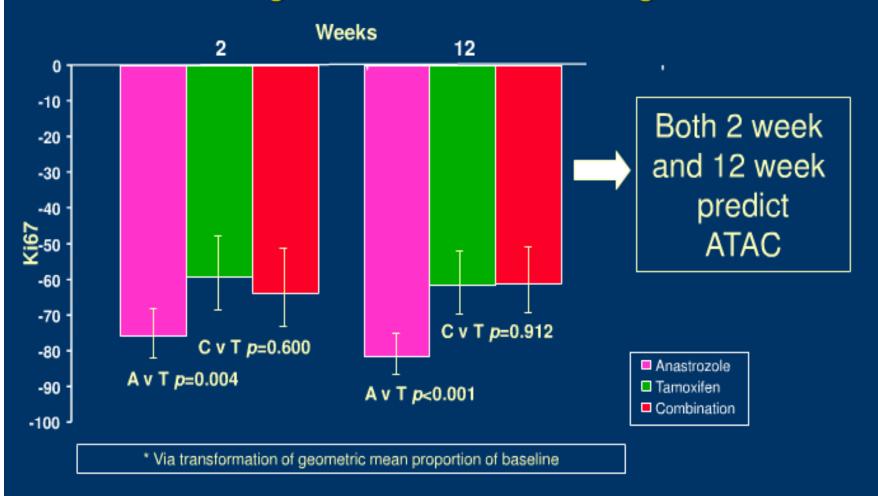
treatment conort					
Cohort A (N=42) CT	Cohort B (N=61) CT+ anti-HER2				
49 yrs (29;76)	49 yrs (26;80)				
15 (35.7%)	23 (37.7%)				
15 (35.7%)	24 (39.3%)				
12 (28.6%)	14 (23%)				
27 (64.3%)	51 (83.6%)				
1 (2.4%)	2 (3.3%)				
14 (33.3%)	8 (13.1%)				
11 (26.2%)	2 (3.3%)				
28 (66.7%)	48 (78.7%)				
3 (7.1%)	11 (18%)				
13 (31%)	23 (37.7%)				
28 (66.7%)	37 (60.7%)				
1 (2.4%)	1 (1.6%)				
25% (8%;75%)	30% (10%;90%)				
	Cohort A (N=42) CT 49 yrs (29;76) 15 (35.7%) 15 (35.7%) 12 (28.6%) 27 (64.3%) 1 (2.4%) 14 (33.3%) 11 (26.2%) 28 (66.7%) 3 (7.1%) 13 (31%) 28 (66.7%) 1 (2.4%)				

NA: not available



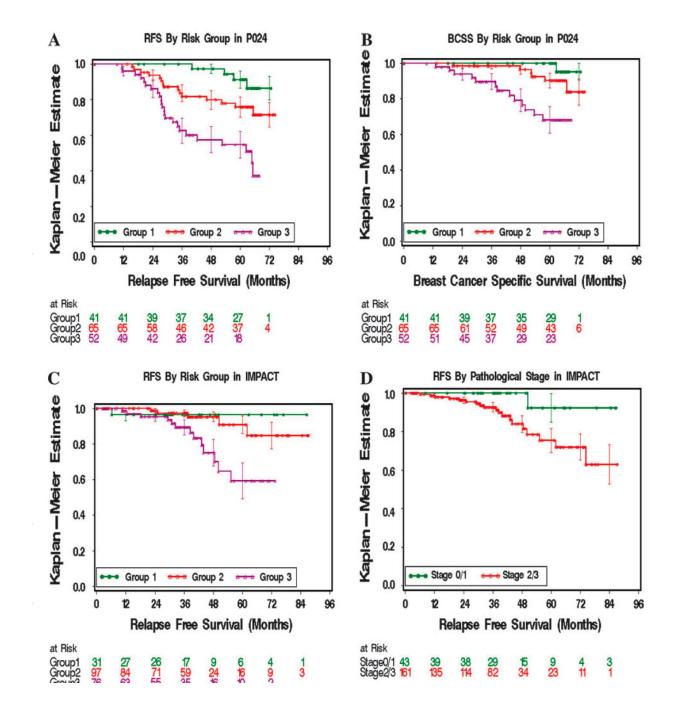
Guarneri V et al, ASCO 2012 poster presentation


Ki-67: son of a lesser God

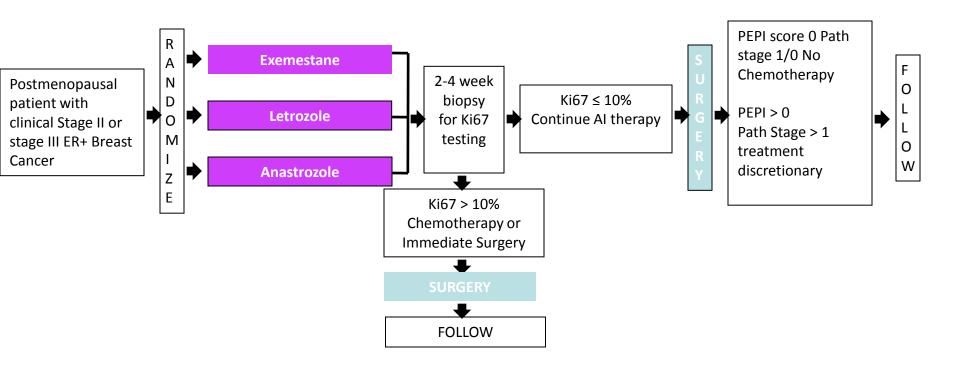

IMPACT Trial

Individual changes in Ki67 after 2 weeks

IMPACT (A v Tam v Combination) % Ki67 Change from Baseline* During Treatment


Prognostic Value of Ki67 Expression After Short-Term Presurgical Endocrine Therapy for Primary Breast Cancer

Mitch Dowsett, Ian E. Smith, Stephen R. Ebbs, J. Michael Dixon, Anthony Skene, Roger A'Hern, Janine Salter, Simone Detre, Margaret Hills, Geraldine Walsh

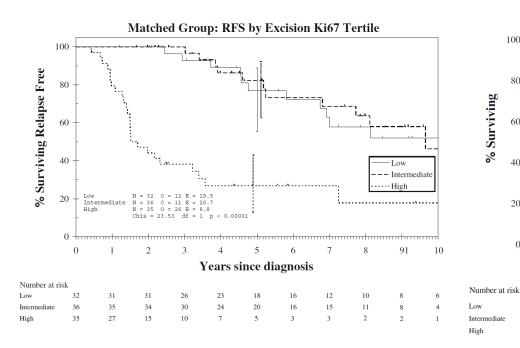

	Univariate anal	Multivariable analysis†			
Factor	No. of events/No. of patients	HR (95% CI)	P	HR (95% CI)	P
Tumor size at baseline, per 1-cm increase	25/156	1.66 (1.35 to 2.04)	<.001	1.69 (1.36 to 2.1)	<.001
Nodal status at baseline, positive vs. negative	25/157	1.43 (0.6 to 3.44)	.42	-	-
Ki67 expression at baseline, per 2.7-fold increase	25/157	1.85 (1.06 to 3.22)	.03	-	-
Ki67 expression after 2 wk of treatment, per 2.7-fold increase	25/158	2.09 (1.41 to 3.08)	<.001	1.95 (1.23 to 3.07)	.004
ER level at baseline, per 2.7-fold increase	25/158	0.35 (0.2 to 0.62)	<.001	-	-
ER level after 2 wk of treatment, per 2.7-fold increase	25/154	0.62 (0.5 to 0.77)	<.001	0.78 (0.62 to 0.99)	.04
TUNEL level at baseline, per 2.7-fold increase	25/148	1.52 (0.76 to 3.03)	.24	_	-
TUNEL level after 2 wk of treatment, per 2.7-fold increase	23/141	1.65 (0.86 to 3.16)	.13	-	-
Adjuvant chemotherapy after surgery, yes vs. no	25/158	0.88 (0.35 to 2.21)	.78	-	-

The preoperative endocrine prognostic index (PEPI)

Pathology, biomarker	I	RFS	BCSS		
status	HR	Points	HR	Points	
Pathological tumor size					
T1/2		0		0	
T3/4	2.8	3	4.4	3	
Node status					
Negative		0		0	
Positive	3.2	3	3.9	3	
Ki67 level					
0%-2.7% (0-1†)		0		0	
>2.7%-7.3% (1-2†)	1.3	1	1.4	1	
>7.3%-19.7% (2-3†)	1.7	1	2.0	2	
>19.7%-53.1% (3-4†)	2.2	2	2.7	3	
>53.1% (>4†)	2.9	3	3.8	3	
ER status, Allred score					
0–2	2.8	3	7.0	3	
3–8		0		0	

ACOSOG Z1031 COHORT B

Amendment 6
Activated October 1st 2009


http://www.ctsu.org/

Prognostic significance of Ki 67 before and after PCT

% Surviving

35

35

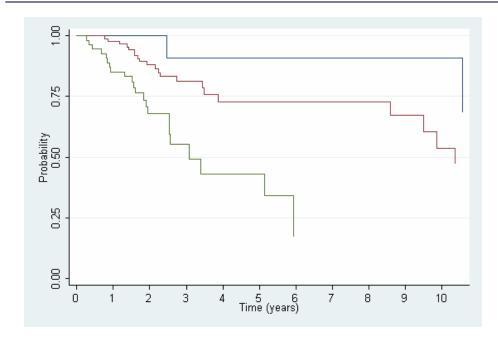
80 Intermediate

Years since diagnosis

Matched Group: Overall Survival by Excision Ki67 Tertile

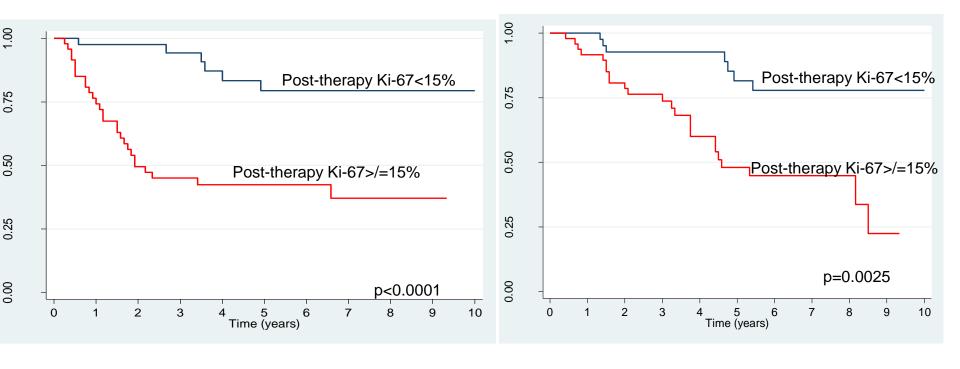
10

Prognostic model based on nodal status and post-therapy Ki 67 in patients with residual disease after PCT


- 221 patients with clinical stage II-III BC treated with PCT were included
- A pCR was obtained in 8.8% of the cases
- HR negativity, HER2 positivity and poor differentiation were significant predictors of pCR

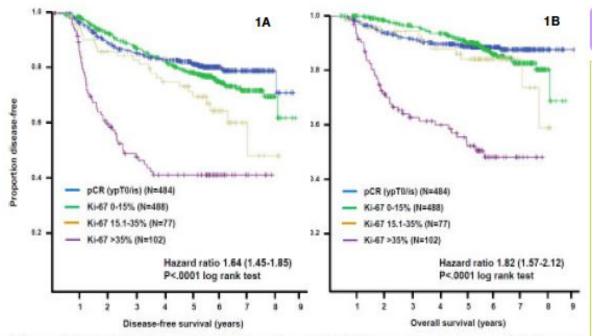
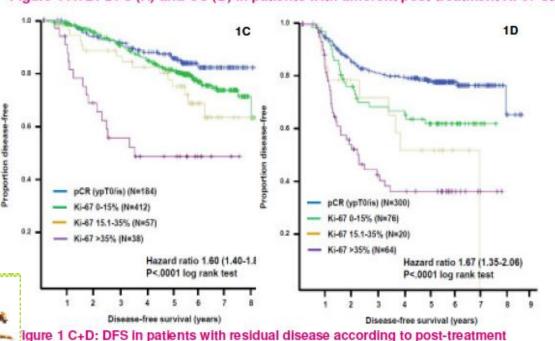
	5-year DFS (95% CI)	P value ^a	5-year OS (95% CI)	P value ^a
All patients	69.3% (60.1% to 76.9%)		82.8 (72.3% to 89.6%)	
Ki-67 <15%	77.2% (61.0% to 87.2%)		87.8% (69.0% to 95.5%)	
Ki-67 ≥15%	50.2% (32.2% to 65.8%)	0.0001	73.1% (51.1% to 86.4%)	0.0078
p53 <10%	68.8% (51.4% to 81.1%)		81.4% (62.5% to 91.4%)	
p53 ≥10%	48.6% (25.8% to 68.1%)	0.092	73.1% (45.1% to 88.4%)	0.457
EGFR <1%	67.1% (54.5% to 77.0%)		80.9% (65.4% to 90.1%)	
EGFR ≥1%	62.8% (28.9% to 84.3%)	0.469	63.7% (17.3% to 89.1%)	0.068
VEGFR2 ≤15%	70.4% (56.8% to 80.4%)		84.1% (65.7% to 93.1%)	
VEGFR2 >15%	57.5% (32.9% to 75.8%)	0.615	72.4% (45.3% to 87.7%)	0.346

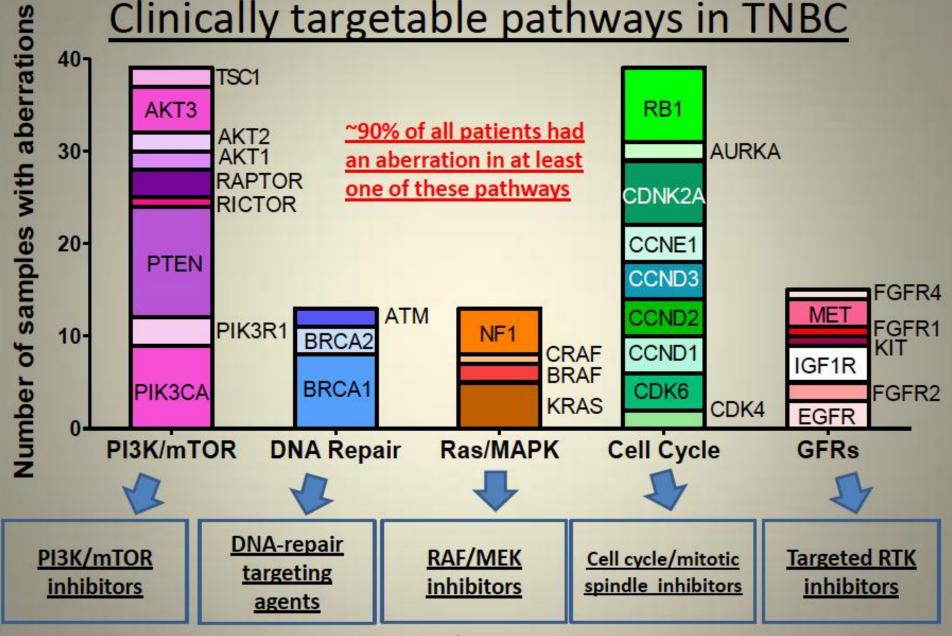
Survival according to risk groups


- In the multivariate analysis, post-therapy Ki 67 and nodal status were the only factors significantly related with patients outcome
- 187 patients with residual disease after PCR were classified as follows:

	HR	р	HR	р
	(relapse)		(death)	
Low risk (low ki67, N-), 14%	ref		ref	
Intermediate risk (high Ki67 or N+), 54%	3.1		2.4	
High risk (high ki67 and N+), 31%	9.3	<0.0001	6.5	0.042

High Ki-67 in residual disease following preoperative chemotherapy is an independent predictor of recurrence and death in breast cancer patients


Figure 1 A+B: DFS (A) and OS (B) in patients with different post-treatment KI-67 status

i-67 in HR-positive (C) and HR-negative (D) disease

GEPAR-TIPIO

GBG GERMAN BREAST GROUP

This presentation is the intellectual property of the authors/presenters. Contact them at carlos.arteaga@vanderbilt.edu for permission to reprint and/or distribute

PST: a step forward precision cancer medicine

- In vivo test of treatment efficacy
- Patient & tumor characteristics are crucial to choose the most appropriate therapy
- Patients still at high risk of relapse after receiving the best neoadjuvant therapy are the optimal candidates for testing new agents/strategies
- Molecular characterization of residual disease might give insights into biology of micrometastatic disease